Automaten

mit

Termalphabeten

Jens-D. Doll

1.1 Einordnung der Automaten



1.2 F = Vektoren über (Polynom-)Ringen

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_{n-1} \\ x_n \end{pmatrix} \qquad G_i(x) = \begin{pmatrix} g_0(x) \\ g_1(x) \\ g_2(x) \\ \dots \\ g_{n-1}(x) \\ g_n(x) \end{pmatrix}$$

 $x_i \in R$ (Grundstruktur: Ring, Schiefkörper, Körper)

 $g_i \in \mathbb{F}$: Modul über dem multivariaten Polynomring R[x, x-1], $g_i(x)$ univariat in x_i , weil x_i für j $\neq i$ als Parameter zu betrachten sind

1.3 L = Logik über den Vektoren

gegeben sei eine Ordnung auf R[x_i^{-1}] und eine Logik L über R[x_i^{-1}] mit Kombinatoren aus L x L um bedingte Funktionen zu definieren*:

$$F_i(x) := (c_i(x), G_i(x)) :=$$

$$c_{i}(x)$$
 $g_{0}(x)$
 $g_{1}(x)$
 $g_{2}(x)$
...
 $g_{n-1}(x)$
 $g_{n}(x)$

1 Definition 2 Beispiel 3 Algebra 4 Reduktion 5 Ziele

c_i(x) definieren Polytope im Rⁿ

*(≈ guarded command)

1.4 Definition des Termautomaten

Ein Termautomat ist ein Tupel (T, E, Z, S, E, U)

```
Trägermenge T(∑,x) für F und L
```

$$\mathbb{E}$$
 $\epsilon \mathcal{L}_o$, definiert Axiome für R, \mathbb{F} und \mathbb{L}

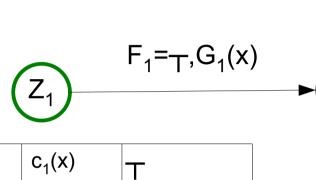
U Zustandsübergänge ϵ Z x \mathbb{L} x \mathbb{F} x Z

```
mit \ c(x) \qquad T(\sum,x) \longrightarrow \mathbb{L}
```

mit
$$F(x)$$
 $T(\sum_{i=1}^{\infty},x) \longrightarrow T(\sum_{i=1}^{\infty},x)$

(und ggf. \forall z \in Z, k \in U, b \in L: $|k(z,b)| \le 2$)

2.1 Beispielautomat

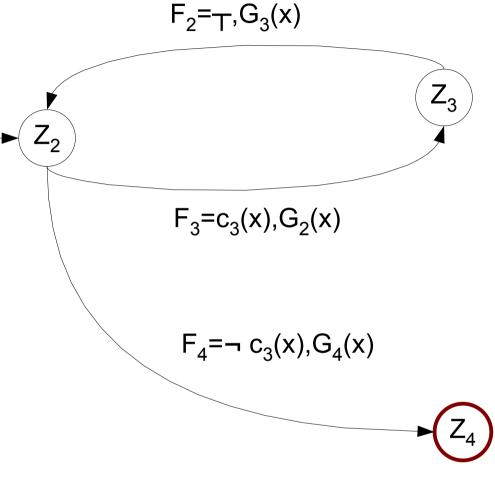


F ₁	c ₁ (x)	T
	g ₁₁ (x)	$x_4 = x_1$
	g ₁₄ (x)	x ₃ =x ₂

F ₂	c ₂ (x)	T
	g ₂₁ (x)	x_4 =succ(x_4)
	g ₂₄ (x)	$x_3 = pred(x_3)$

F ₃	c ₃ (x)	x ₃ > 0

F ₄	$\neg c_3(x)$	$x_3 \le 0$
	() \ /	



es seien x1, x2 $\in \mathbb{N}^0$ Parameter

2.2 Bildung der transitiven Hülle

- 1) der Automat definiert die Relation der Zustandsübergänge
- die Relation hat eine transitive Hülle (e.g. Warshalls Algorithmus für gewichtete Graphen)

$$A = F_4 \circ (F_3 \circ F_2)^* \circ F_1 \mid F_4 \circ F_1$$

Vorsicht: es ist nicht die Kleene-Algebra!

2.3 Reduktion der Hülle

Automat läßt sich eindeutig reduzieren

$$A = F_4 \circ F_5 \circ F_1 \mid F_6$$

mit reduzierten Funktionen

$$F_5 = (F_3 \circ F_2)^* x_4 = x_1 + x_2$$

 $F_6 = F_4 \circ F_1 x_4 = 0$

^{*} F₅ wird durch diskrete Integration errechnet, s.u.

3.1 Algebra über den Vektoren

$$(x | y) | z = x | (y | z)$$
 (1) $x | y = y | x$ (5)

$$(x \circ y) \circ z = x \circ (y \circ z) \qquad (2) \qquad 1 \circ x = x \qquad (6)$$

$$(x | y) \circ z = x \circ z | y \circ z$$
 (3) $x^* = (x^* \circ x) | 1$ (7)

$$x \circ (y \mid z) = x \circ y \mid x \circ z$$
 (4)

| := Disposition

° := Komposition

* := Iteration

x, y, z
$$\in$$
 L x F es entsteht ein unitärer Semiring

3.2 Dekomposition von Vektoren

$$F(x) = \begin{pmatrix} c(x) \\ f_0(x) \\ f_1(x) \\ f_2(x) \\ \vdots \\ f_2(x) \\ \vdots \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix} = \begin{pmatrix} c(x) \\ f_0(x) \\ \vdots \\ f_1(x) \\ \vdots \\ f_n(x) \\ \vdots \\ f_{n-1}(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$

1 Definition 2 Beispiel

3 Algebra

4 Reduktion

5 Ziele

konstant in x_i

rekursiv

3.3 Dekomposition von Vektoren

$$F(x) = \begin{pmatrix} c(x) \\ f_0(x) \\ f_1(x) \\ f_2(x) \\ \dots \\ f_{n-1}(x) \\ f_n(x) \end{pmatrix} = \begin{pmatrix} c(x) \\ f_0(x) \\ id \\ id \\ id \\ \dots \\ f_{n-1}(x) \\ f_n(x) \end{pmatrix} o \begin{pmatrix} c(x) \\ id \\ f_2(x) \\ f_1(x) \\ \dots \\ id \\ id \end{pmatrix}$$

1 Definition 2 Beispiel

3 Algebra

4 Reduktion

5 Ziele

konstant in x_i

permutierend

3.4 Operationale Termersetzung

arithmetische Termersetzung

$$1 + 0 = 1$$
 $1 * 1 = 1$
 $1 + 1 = 2$
 $(2 * 1) \mod 2 = 0$
 $(1 + 1) * (1 - 1) = 0$

ist gleichbedeutend mit der operationalen Ausführung!

1 Definition 2 Beispiel

3 Algebra

4 Reduktion 5 Ziele

3.5 Algebraische Termersetzung

Algebraische Termersetzung und Normalisierung

$$a + 0 = a$$
 $a * 1 = a$
 $a + a = 2 * a$
 $(2 * a) \mod 2 = 0$
 $(a + 1) * (a - 1) = a^{2 - 1}$
...

ist gleichbedeutend mit der algebraischen Ausführung, technisch auch Optimierung!

4.1 Interpretation von Variablen

Variable werden nicht als Werte

$$x_i = x_i + 1,$$

sondern als Funktionen interpretiert

$$f(x_i) := f(x_i) + 1,$$

und es wird nach der zu x_i gehörigen Funktion gefragt.

1 Definition 2 Beispiel

3 Algebra

4 Reduktion

5 Ziele

4.2 Diskretes Integral - unbestimmt

$$n \in \mathbb{N}^0$$
 sei der Iterator $\oint \subseteq \mathbb{F} \to \mathbb{F}$

Konstante	∮c dx _i	=	С
Variable	∮ x _j dx _i	=	x_{j}
Nachfolger	∮ succ(x _i) dx _i	=	x+n
Vorgänger	∮ pred(x _i) dx _i	=	x-n
Summand	∮x _i + c dx _i	=	x _i +n*c
Faktor	∮x _i * c dx _i	=	x _i * c ⁿ
Kettenregel	$\oint f_i(g_j(x),y) dx_i$	=	$\oint f_i(\oint g_j(x) dx_j,y) dx_i$
Vektoren	∮x dx	=	$(\oint x_1 dx_1, \dots \oint x_n dx_n)$

1 Definition 2 Beispiel 3 Algebra 4 Reduktion 5 Ziele

Konstanten oder Wörter mit Linksfaktor lassen sich integrieren

4.3 Diskretes Integral - bestimmt

 $n \in \mathbb{N}^0$ sei der Iterator. b(x) das Integrationsgebiet, b⁻¹(i) Umkehrfunktion $\oint \subset \mathbb{F} \to \mathbb{F}$

 $_{b(x)}$ $\oint c dx_i$ Konstante C $_{b(x)}$ $\oint x_i dx_i$ Variable $\mathbf{X}_{\mathbf{i}}$ $_{b(x)}$ $\oint succ(x_i) dx_i$ $x+b^{-1}(i)$ Nachfolger $\oint_{b(x)} \oint pred(x_i) dx_i$ $x-b^{-1}(i)$ Vorgänger $x_i + b^{-1}(i) * c$ Summand

b⁻¹(x) muß einen Linksfaktor enthalten

4.4 Terminierungsbeweise

Durch die Bildung aller bestimmten diskreten Integrale läßt sich die Termierung dieser Automaten ableiten. Es gilt in dreiwertiger Logik

- a) Rechnung terminiert
- b) Rechnung terminiert nicht
- c) Terminierung nicht errechnet

5 Grenzen und Ziele

Einschränkungen, z.Zt.:

- geschlossene Lösung für Polynome mit deg(p(x))>2
- funktionsalternierende Folgen (e.g. Collatz-Folge)
- komplexe, μ-Rekursion

. . .

Zielvorstellung:

Elegantes Beweissystem für

- prozedurale Sprachen
- Hardwaresprachen
- ...

1 Definition 2 Beispiel 3 Algebra 4 Reduktion 5 Ziele

Vielen Dank für Ihre Aufmerksamkeit